Spatial conservation planning in Europe with Zonation

Aija Kukkala & Tuuli Toivonen
University of Helsinki
Why Europe?

- Long-term human impact on environment
- Intensive land use change
- Data availability
- Exceptional collaboration between independent countries in the scope of EU (e.g. Natura 2000 network)
The workflow of spatial prioritization in Zonation

Setting the objectives

Ecological model

Preprocessing of data

Spatial prioritization

Result visualization

Verification

Interpretation

Recommendations for action

Environmental data sets

- Habitats / environmental data
 - Remote sensing & GIS analyses

- Species or BD features
 - Species distribution modeling

- Ecosystem services
 - Modeling and expert elicitation

Societal data sets

- Threats
 - GIS, registry data, statistics, simulations

- Costs
 - GIS, registry data, statistics, simulations

- Current plans
 - Planning documents
Our questions here:

- What kind of data can be used in Zonation analyses in the context of Europe?
- The potential of the INSPIRE process to benefit spatial conservation planning?
- How do data choices and data quality influence on spatial prioritization results?
- Continental vs. national priorities for biodiversity?
01 Spatial data resources in Europe
02 Zonation examples from Europe
Data: Data sets in spatial prioritization

DATA THEME
- Biodiversity features (species, habitats, ecosystem services)
- Anthropogenic data (land cover, land use, administrative borders)

DATA ORIGIN & TYPE
- Observation data
- Projected or modelled
- Presence-absence, probability of occurrence, density, abundance, amount

DATA USAGE
- Directly usable data sets (e.g. species distributions)
- Potential derivates (e.g. CORINE land cover)
- Additional data needs (e.g. costs)
Starting point

- Analysis extent?
- Available data?
- Prioritization method?
- Weighting of features?
- Connectivity?
Data and spatial prioritization

Preprocessing of data

Preprocessing in GIS software or R

Polygon or vector data are not directly supported

Spatial prioritization

Standard rasters
- same cell size
- Same extent

Zonation doesn’t recognize projections

Processing in GIS software, R, statistical software

Result visualization
- Verification
- Interpretation

Recommendations for action
Data: Data sets used in Zonation examples

INPUT

Species data (annex III)
- Amphibians, birds, mammals, reptiles
 - Thuiller et al.
 - Laboratoire d’Ecologie Alpine (LECA), Univ. Grenoble
 - IUCN Red Lists species (IUCN)

Natura 2000 (annex I)

Administrative regions (annex I)

CORINE land cover (annex II)

Bio-geographical regions (annex III)

OUTPUT
Results: Impact of analysis area

Red = Top priorities

EU28

Bio-geographical regions extent
Results: Impact of prioritization method

Balanced solution (ABF)

Emphasis on rare species (CAZ)

Zonation has several prioritization methods available
Results: Hierarchical analysis (Natura 2000)

Red = Top priorities

EU28 extent prioritization

Red = Top priorities are in Natura 2000 network

EU28 extent prioritization with Natura 2000 network
Results: Performance curves

Natura 2000

Species range protected on average %

Protected area %

Prioritization

Prioritization with Natura 2000
Results: Administrative units analysis

National or continental conservation planning?

EU28 extent prioritization

Prioritization with administrative units (countries)

National or continental conservation planning?

Species range protected on average %

Protected area %

Prioritization with administrative units

Prioritization EU28 extent
Results: Land cover

- CORINE derived data used as land use intensity layer in Zonation
- CORINE land cover classes got scores according to naturalness (environment in natural state)
- **Condition layer**

No condition transformation
Results: Land cover

- CORINE derived data used as land use intensity layer in Zonation
- CORINE land cover classes got scores according to naturalness (environment in natural state)
- **Condition layer**
Results: impact of data sources

- Preliminary analysis: comparison based on private non-open data and openly accessible data
- 920 species
- The significance of data quality
Results: impact of data sources

Open data, coarse
Proprietary data, detailed
• Data quality and data services are crucial
• More harmonized high resolution data -> more high quality results
• Data policy: international collaboration is vital -> EU and INSPIRE have an exceptional potential
Spatial conservation planning: Conclusions

• Land use change and policy emphasis may change conservation needs
• Zonation can help balance the needs of species, habitats, ecosystem services and other land uses
• Cost-efficiency can be considered in prioritization
• Alternative choices in prioritization and data can lead to major differences in the proposed priorities
• High quality data enables combining spatial conservation planning with general land use planning
• SCP is one of the beneficiaries of the INSPIRE process
Thank you! See you after the coffee break!

Aija Kukkala & Tuuli Toivonen

C-BIG Conservation Biology Informatics Group
University of Helsinki, FINLAND