
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EUR 23397 EN - 2008

Resource Oriented Architecture and REST

Roberto Lucchi, Michel Millot
European Commission
Joint Research Centre

Institute for Environment and Sustainability

Christian Elfers
con terra - Gesellschaft für Angewandte Informationstechnologie mbH

Assessment of impact and advantages on INSPIRE



The mission of the Institute for Environment and Sustainability is to provide scientific-technical 
support to the European Union’s Policies for the protection and sustainable development of the 
European and global environment. 
 
European Commission 
Joint Research Centre 
Institute for Environment and Sustainability 
 
Contact information 
Roberto Lucchi  
European Commission Joint Research Centre 
Institute for Environment and Sustainability 
Spatial Data Infrastructures Unit 
TP262, via Fermi 2749 
I-21027 Ispra (VA) 
ITALY 
E-mail: Roberto.Lucchi@jrc.it 
Tel.: +39 0332 78 5325 
Fax: +39 0332 78 6325 
 
Michel Millot 
European Commission Joint Research Centre 
Institute for Environment and Sustainability 
Spatial Data Infrastructures Unit 
TP262, via Fermi 2749 
I-21027 Ispra (VA) 
ITALY 
E-mail: Michel.Millot@jrc.it 
Tel.: +39 0332 78 6146 
Fax: +39 0332 78 6325 
 
Christian Elfers 
Con terra - Gesellschaft für Angewandte Informationstechnologie mbH 
E-mail: C.Elfers@conterra.de 
Tel.: +49 0251 7474 333  
Fax: +49 0251 7474 100 
 
 
http://ies.jrc.ec.europa.eu/ 
http://www.jrc.ec.europa.eu/ 
 
Legal Notice 
Neither the European Commission nor any person acting on behalf of the Commission is 
responsible for the use which might be made of this publication. 
 

Europe Direct is a service to help you find answers 
to your questions about the European Union 

 
Freephone number (*): 

00 800 6 7 8 9 10 11 
 

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. 

 
A great deal of additional information on the European Union is available on the Internet. 
It can be accessed through the Europa server http://europa.eu/ 
 
JRC 45883 
 
EUR 23397 EN 
ISBN 978-92-79-09320-3 
ISSN 1018-5593 
DOI 10.2788/80035 



 
 
Luxembourg: Office for Official Publications of the European Communities 
 
© European Communities, 2008 
 
Reproduction is authorised provided the source is acknowledged 
 
Printed in Italy 



 
Table of Contents 
 
Abbreviations ........................................................................................................................................... 5 
Introduction .............................................................................................................................................. 6 
Service Oriented Architectures ................................................................................................................ 6 
Resource Oriented Architectures.............................................................................................................. 6 

Main Concepts...................................................................................................................................... 6 
Designing Resource Oriented Architectures ........................................................................................ 7 

Technological considerations ........................................................................................................... 8 
Implementing Resource Oriented Architectures .................................................................................. 8 

Weakly REST compliant architecture.............................................................................................. 9 
RESTFul compliant architecture ...................................................................................................... 9 
Resource oriented architecture ....................................................................................................... 10 
Applying ROA principles to INSPIRE: a simple case study ......................................................... 11 

Performance........................................................................................................................................ 12 
Security............................................................................................................................................... 12 

Conclusion.............................................................................................................................................. 12 
References .............................................................................................................................................. 13 
 



Abbreviations 
 
HTTP  HyperText Transfer Protocol 
ISO  International Standardization Organization 
IR  Implementing Rule 
OGC  Open Geospatial Consortium 
ROA   Resource Oriented Architectures 
SOA  Service Oriented Architectures 
SOAP  Simple Object Access Protocol 
REST  Representational State Transfer 
RPC  Remote Procedure Call 
UML   Unified Modeling Language 
URL  Uniform Resource Locator 
W3C  World Wide Web Consortium 
WADL Web Application Description Language  
WFS  Web Feature Service 
WPS  Web Processing Service 
WSDL  Web Service Description Language 



Introduction 
 
In light of the emerging discussion on Resource Oriented Architectures (ROA) and REST 
technology platform as solutions for spatial data distributed infrastructures, the aim of this 
document is capture Resource Oriented Architectures principles and assess the feasibility as 
well as the advantages of using such approach compared with Service Oriented 
Architectures (SOA). Although most of the comments are domain independent we will use 
the INSPIRE [1] (and the OGC services [2]) infrastructure that is currently based on a SOA 
as domain for the comparative analysis. 
 
The SOA and ROA architectural design patterns and the corresponding distributed 
programming paradigms provide a conceptual methodology and development tools for 
creating distributed architectures. Distributed architectures consist of components that clients 
as well as other components can access through the network via an interface and the 
interaction mechanisms the architecture defines; in the cases of ROA and SOA such 
distributed components will be named respectively resources and services.  
 
In the following sections SOA and ROA principles are presented; considering that there is no 
common agreement on ROA principles the analysis takes into account different scenarios. 

Service Oriented Architectures 
A service provides business functions to its consumer and in ISO 19119 [3] it is defined as 
“Distinct part of the functionality that is provided by an entity through interfaces”. In particular, 
in computing terms, a service is an application that provides information and/or functionality 
to other applications. Services are typically non-human-interactive applications that run on 
servers and interact with applications via an interface. 
 
When designing a SOA the granularity and the various service types must be defined. 
Usually this phase is driven by the categorization of the business functions the infrastructure 
has to offer. In the case of INSPIRE (and OGC), service types (and Implementing Rules for 
INSPIRE) as well as the corresponding use case functionalities definitions are already 
available and can be reused.  
 
Finally, although this section is devoted to discuss about the philosophy driving the design of 
SOA, some remarks about SOA and technological platforms are necessary. The way SOA is 
concretely developed depends on the specific platform and in particular on what concerns the 
communication infrastructure (usually based on TCP/IP such as HTTP) and on the way the 
interface is implemented and described. In the context of INSPIRE the platform is based on 
the SOAP (on HTTP POST) binding [4] while in the next section, when talking about ROA, 
we assume REST as development platform.  

Resource Oriented Architectures 

Main Concepts 
Resource Oriented Architectures (ROA) [5] are based upon the concept of resource; each 
resource is a directly accessible distributed component that is handled through a standard, 
common interface making possible resources handling. RESTFul platforms [6] based on 
REST development technology enable the creation of ROA. 
The main ROA concepts are the following (for a complete and exhaustive definition of the 
main concepts see [6]): 



 
• Resource 

– anything that’s important enough to be referenced as a thing itself  
• Resource name 

– unique identification of the resource 
• Resource representation 

– useful information about the current state of a resource  
• Resource link 

– link to another representation of the same or another resource 
• Resource interface 

– uniform interface for accessing the resource and manipulating its state 
 
The resource interface semantics is based on the one of HTTP operations. The following 
table summarizes the resource methods and how they could be implemented1 using the 
HTTP protocol: 
 
Resource method Description HTTP operation 
createResource Create a new resource 

(and the corresponding 
unique identifier) 

PUT  

getResourceRepresentation Retrieve the 
representation of the 
resource 

GET 

deleteResource Delete the resource 
(optionally including 
linked resources) 

DELETE (referred 
resource only), POST 
(can be used if the delete 
is including linked 
resources) 

modifyResource Modify the resource  POST  
getMetaInformation Obtain meta information 

about the resource 
HEAD 

Table 1 
 
In terms of platform implementation specification, each resource must be associated to a 
unique identifier that usually consists of the URL exhibiting the resource interface.  
 

Designing Resource Oriented Architectures 
One of the most important decisions that have to be taken in the design of a Resource 
Oriented Architecture is what must be considered a resource (by definition, each component 
deserving to be directly represented and accessed).  
 
This is one of the main differences between ROA and SOA where in the latter one the single, 
directly accessible distributed component, represents one or more business functionalities 
that often process different potential resources. Such resources are credited candidates for 
being considered resources in a ROA, thus deserving to be represented as distributed 
components (e.g. features offered by WFS, registers or items of registries/catalogues, WFS 
and Registry/Catalogue services functionalities).  
 

                                                 
1 Here we consider, as in the REST technology, the semantically equivalent ones.  



Once having defined the granularity of the resources composing the ROA it is necessary to 
define, for each resource type, the content of the messages for invoking the methods as well 
as the corresponding responses. More in detail, beside the definition of resource types (and 
sub types), an addressing schema for accessing instances of those resource types, a 
response schema (response is not binary) and a mapping of logical functions to the HTTP 
operations. All resources in a ROA are accessed via the same common interface which is 
plain HTTP. It is worth noting that the usage of a common interface does not necessarily 
mean that all the necessary information enabling interoperability and collaboration among 
resources are available. The necessity of integrating a standard common interface 
description with some specific service instance aspects has been already addressed in other 
existing solutions such as, for instance, for the OGC WPS execute operation [7] where the 
specific processing detailed information are offered through the describeProcess operation. 
In a ROA, this information completes the description of the resources and their interface thus 
enabling: i) system integration and interoperability through tools for the creation of resource 
clients, ii) message validation processes, and iii) model driven development (top-down 
approach) for which a typed description of the interface and its operation is necessary.  
In the REST technology such a description is based on WADL documents that play the same 
role of WSDL in the W3C Web Services platform; both languages use XML schema for 
expressing the structure of exchanged messages. 
 

Technological considerations 
Considering that REST and in particular ROA are at an earlier development stage this 
section is devoted to list some technological aspects that could be relevant for assessing the 
suitability of such solution. 
At the best of our knowledge current development tools (e.g. JAX-RS, 
http://jcp.org/en/jsr/detail?id=311) are not addressing top-down development enabling model 
driven architecture development as well as resource client development. This approach was 
used in the ORCHESTRA project (http://www.eu-orchestra.org/) where UML service and data 
specification was used to derive the corresponding WSDL and related message schemas 
and then, through the WSDL, the client and service Java skeletons (apache axis tools).   
However, the WSDL version 2.0 [8] now supports all the necessary HTTP operations (PUT, 
POST, GET, DELETE) thus making possible to describe the common REST interface, this 
means that WSDL could be used as the bridge between REST and W3C Web service 
platform enabling the inter-platform collaboration. 
Finally a more practical consideration is about the HTTP GET operation that is supposed to 
provide access to resource representations. Although in principle there is not limitation to the 
length of the URL the browsers use a limited amount of characters, thus complex requests 
could be not easily expressed and used in normal web browsers and applications. Moreover, 
when the request message is complex the GET does not provide any mean for validating the 
structure as instead is possible when using, for instance, POST XML based requests 
(however, where used for getting information, would be in contrast with the ROA principles). 
 

Implementing Resource Oriented Architectures 
In this section we reason on costs and benefits of implementing a ROA starting from an 
already available SOA. Where necessary we will focus on OGC services and INSPIRE 
network services architecture that are both based on such distributed architecture model.  
The debate on ROA (and REST) is spanning on different abstraction levels and in particular 
most of the discussion is focusing on REST rather than ROA design patterns. We present 
and reason on three different scenarios, two of them (REST) platform dependent and the 
other one aiming at reasoning at the abstract architecture level where ROA is conceived. 



The cases we consider are the following: 
 
• Weakly REST compliant architecture: it is based on distributed components offering 

their functionalities through the HTTP operations. The usage of HTTP operations 
could be semantically not coherent with Table 1. 

• RESTFul compliant architecture: it is based on distributed components faithfully 
implementing the concept of common resource interface and of binding. 

• Resource Oriented Architecture: it is composed by distributed components 
representing all the resource types deserving to be defined and exposed in the 
architecture.   

 
It is clear that the first and the second category are principally related with REST and in 
particular with distributed component binding and interface aspects. These two views are in 
accordance with who is claiming that REST is a SOA development platform. The third one 
instead is more centring the architectural issue abstracting away from specific development 
platforms; this is the pure ROA where all the resources have an URI. 
 
The analysis of the costs and benefits for each of the proposed scenarios, focusing where 
necessary on the existing INSPIRE SOA and on OGC services, is discussed in the following 
sub-sections. 

Weakly REST compliant architecture 
SOA based on services offering their functionalities through an interface accessible via HTTP 
operations are all members of this category. To exemplify, OGC Web Services specifications 
are all based on Remote Procedure Call programming style and the various service bindings 
(HTTP GET, POST, HTTP/POX, HTTP/KVP, SOAP via HTTP/POST, etc.) are all matching 
this definition. This is clearly a weak REST compliance level because it does not guarantee 
that a (semantically) common service interface is used but, instead, that the bindings are 
based on a subset of HTTP operations. Since this is exactly the reference architecture we 
use for the comparative cost and benefits analysis because it corresponds to what is 
currently available we will not reason further on this scenario. 

RESTFul compliant architecture 
It is worth noting that having a set of components using the same common interface does not 
necessarily produce a pure Resource Oriented Architecture. More precisely, we could obtain 
a RESTFul compliant architecture by an existing SOA simply by mapping services into 
resources (e.g. mapping the existing OGC services interfaces into the common resource 
interface) with no others resource types foreseen in the derived architecture. This is the case 
of the resource oriented view for OGC services discussed in  [9] at the platform independent 
level (ISO General Feature Model). This view represents a sort of bridge between the 
Information and Service viewpoints and the resulting OGC platform independent specification 
can be used to derive the implementation specifications for both the W3C and the RESTFul 
Web services platforms.  
The deviation between the derived architecture and the corresponding pure ROA consists 
exactly of the conceptual differences between SOA and ROA and it is well described in [6] 
where the authors say: “Most SOAP services support multiple operations on diverse data, all 
mediated through POST on a single URI. This isn’t resource oriented: it’s RPC-style”. As 
previously mentioned the “RPC-style” is at the basis for most of the currently available SOA 
(even though some architectural alternatives to that service interaction pattern have been 
proposed) and it is in particular the case for OGC as well as INSPIRE services where the 
“procedures” correspond to the business functionalities the service is willing to offer. It is 



worth noting that the fact that the cited text refers to SOAP services has no implications in 
this comparison, it holds for all SOA services based on RPC. 
As far as development cost and benefits of such solution are concerned, we think that if on 
the one hand this solution does not require particular development efforts (it is mainly a 
matter of mapping service type interfaces into the common resource interface) and then the 
cost for transposing the existing INSPIRE (and OGC service) architecture is nearly irrelevant, 
on the other hand no clear benefits are in sight. The absence of evident benefits is 
particularly true for OGC services where, in order to properly interoperate and discover the 
right service instance, the statically available interface description has to be integrated with 
the getCapabilities document providing service instance specific meta information (and 
potentially it can be necessary use additional operation like getFeatureType for WFS or 
describeProcess for WPS): in this sense it is clear that supplying service functionalities 
through the common resource interface does not improve system interoperability and open-
endedness. 

Resource oriented architecture 
In the context of INSPIRE and OGC architecture, resources do not necessarily include 
exclusively the services as conceived now. Potential meta types for the INSPIRE ROA are 
the ones defined in the INSPIRE Metadata Implementing Rules2 [10]:  service, dataset and 
dataset series. In [6] the following criteria is indicated: “when in Doubt, make it a Resource”. 
For instance, it is proposed to consider relations between resources as other resources; to 
exemplify this idea a datasets as well as a service able to use (visualize, transform or 
process) such datasets are meta types, and the “coupled resource” INSPIRE metadata 
element indicating the link between INSPIRE resources could be represented by an 
additional meta type. The proliferation of meta types compared with the (already well defined) 
service types causes a significant gap between the two architectures in terms of components 
and, therefore, most of the currently SOA-based specifications might not be re-usable for 
developing the equivalent INSPIRE ROA. Regarding the INSPIRE design and development 
process this aspect is particularly relevant, the development cost would be certainly bigger 
than adapting existing services and, in addition, the definition of the INSPIRE ROA might be 
time consuming and difficult to achieve with the planned time schedule. Moreover, the cost is 
not limited to the resource infrastructure development but is instead affected also by the 
necessary re-engineering of clients that are currently based on SOA. Regarding the benefits 
of such solution, the getResourceRepresentation offered through the HTTP GET makes the 
resource representation easily accessible and, consequently, general purpose search 
engines could more easily integrate resources representations into the search. Some 
proposals in this direction already exist like for the Dublin Core Metadata Element Set 
(http://dublincore.org/documents/2000/08/15/dcq-html/) where it has been defined a standard 
manner for introducing metadata in the HTML HEAD tag, this could be done in the RESTFul 
platform through the getMetaInformation resource method as well. However, unless the 
search engine is complying with that standard it would be impossible guarantee the usage of 
the exact metadata elements semantics (e.g. bounding box) and consequently support 
specific geo (and INSPIRE) search criteria. Finally, one of the claimed ROA advantages is 
the scalability that can potentially be better than SOA where services collect all the clients’ 
needs3. 
 

                                                 
2 The fact that the Implementing Rules require, for each instance of such resources types, a Unique Resource Identifier 

makes reasonable assume that in a ROA these would become resources. 
3 This does not prevent the adoption of some solutions also in SOA such as the duplication of service instances and the 

usage of service brokers allowing balanced workload distribution among such services. 



Applying ROA principles to INSPIRE: a simple case study 
Based on this analysis it emerges that the only solution deserving to be further investigated is 
the one founded on ROA principles; as a simple case study we use the Draft Implementing 
Rules for Discovery and View services [11] for reasoning under the INSPIRE boundary 
conditions. However, given that this task requires a considerable effort and that no particular 
relevant strategic benefits have been identified we proceed with a preliminary analysis on the 
discovery service.  
 
The resource oriented implementation offering the use cases supposed to be implemented 
with the discovery service could be based on a resource type, whose meta type is INSPIRE 
service, playing the discovery service role for the publish and discover use cases described 
in the IR. The records containing the metadata could be reasonably considered resources 
offering a way to get the representation (could also be more than one in case of different 
profiles), and to modify/delete the content. In this view the resource typed “discovery service” 
is a resource offering a mean for creating and searching resources whose type is “record”. 
More precisely, the publish use case can be implemented through the createResource 
method and it consists of the creation of a new record resource instance, with its own URL, 
containing the specified metadata. The discovery use case can be implemented using the 
getResourceRepresentation method of the “discovery service” resource type allowing for 
retrieving the list of URL addresses of all the matching resources from which will be then 
possible, in a second step, get the representation of each matching record by invoking the 
corresponding getResourceRepresentation method. 
Let us now consider the required changes on the client side. We consider the case of a 
catalogue client using the getRecords operation offered by the OGC Catalogue service for 
supporting the discovery. In the resource oriented view, such a client should instead invoke 
the getResourceRepresentation method offered by the “discovery service” resource and 
then, for each matching record resource URL reference included in the response, it should 
invoke the corresponding getResourceRepresentation in order to get the record description 
(and it could be particularly costly in the case of long matching records lists). It is worth noting 
that the getRecords Catalogue operation provides three different result sets (brief, summary 
and full) that in the resource oriented scenario should be handled by the 
getResourceRepresentation method of record resources and not by the discovery service 
resource. 
An alternative scenario, in order to reduce the responsibility at the client side, could be let the 
discovery service resource in charge of “invoking” the getResourceRepresentation for each 
matching record resource and return the result to the client exactly as in the getRecords 
operation. However, this would be again a service oriented interpretation where the service 
hides and centrally manages various resources while the resource oriented philosophy is 
having direct access to the source instead of to the black box handling the resource.  
In general, centring the design on resources instead of on services requires more awareness 
and responsibility on the client side because the granularity (and, paradoxically, also the 
heterogeneity of resource types) of components with which interact is increasing. Moreover, 
when designing a ROA, the various functionality options that are normally aggregated at the 
service operation level in a SOA would be distributed over resource types as also emerged in 
the ROA based implementation equivalent at the getRecords result sets options. 
 
Besides all these aspects, INSPIRE imposes some other requirements that we discuss in the 
following part. Finally, we conclude this section by reporting the state of the art about 
development tools. 
 



Performance 
In a distributed architecture, besides the computational cost of the offered functionality, the 
performance depends on the cost of transmitting data over the network (i.e. the amount of 
data moved between distributed components) and on the degree of scalability that the 
architecture has. These factors are depending on the communication infrastructure, that is 
the HTTP protocol, and on the solutions for scalability as, for instance, data and service 
replications, improved computational power of the servers and data compression. In general, 
as already pointed out, the fact that the ROA is characterized by a higher number of 
distributed components than the corresponding SOA ones is an advantage in terms of 
scalability. However, in the case of ROA it is worth pointing out that the cost of implementing 
the SOA service operations functionalities can be more complex and in particular it can imply 
more interactions over the network than the single service operation invocation affecting thus 
the single session performance as well as the system scalability. Let us consider again the 
ROA based implementation of the OGC Catalogue getRecords operation; as we illustrated in 
the client side implementation discussion such an operation requires, besides the invocation 
of the “discovery service” getRepresentation resource method, additional invocations at the 
matching record resources whose quantity depends on the number of matching records. It is 
trivial conclude that all these additional invocations can degrade the performance and the 
scalability even though they are performed (typically in parallel for the sake of performance) 
on resources distributed over the network. 
 

Security 
The most proposed solution for security is the usage of HTTP secure protocols (e.g. HTTPS; 
authorization and authentication mechanisms) that offer IP-to-IP secure solutions and not 
application-to-application ones. However, the fact that ROA and REST in particular are 
relying on HTTP is not preventing the usage of other protocols at application instead of at the 
communication infrastructure level.  Authorization in ROA is typically done on the HTTP 
protocol level. By using the common HTTP interface and it’s GET, POST, PUT, DELETE 
operations, it is fairly easy to restrict e.g. DELETE-operations in general. But especially ROA 
implementations that are not strictly following the ROA principles are a potential security leak. 
E.g. if the GET operation with a query-string like “method=delete” is used instead of 
HTTP/DELETE. 
 
Besides the canonical security issues, the peculiarity of ROA where new resources are 
dynamically created raises an additional problem that is defining who is responsible for 
assigning security policies to the created resources (the one willing to create the resource, 
the resource used to create the new one) that become themselves directly accessible over 
the network. This issue could be however coped by applying some secure policies based on 
addressing schema but probably this would not allow, for instance, determining the exact 
access rights of created resources using creator identity. 
 

Conclusion 
From the analysis it emerges that no particular benefits have been identified when using 
REST and RESTFul platforms for offering SOA services. Moreover, concerning pure ROA 
infrastructure we can certainly claim that it is not straightforward rephrase INSPIRE 
architecture (and OGC services) implement the equivalent ROA and it is important take into 
account the INSPIRE time schedule constraints. Moreover, real benefits have to be identified. 
Regarding interoperability between distributed components, as already stated the usage of a 
common standard interface in ROA does not exclude the need for more detailed contracts 



properly describing the distributed components, i.e. the interface and the structure of 
exchanged messages which depends, if not on the specific resource instance, at least on the 
resource meta type. This makes necessary what in REST is often considered optional: REST 
resource must be necessarily described through the WADL (or an equivalent document) and 
the necessary message schemas. In this respect, there is not significant difference between 
REST and W3C Web Services description (WSDL) complexity. No significant difference also 
regarding the discovery. 
Finally, an additional important aspect to take into account is the standardization process; if 
on the one hand standards related with SOAP are in advanced stage and the obligation for 
SOAP bindings to all new OGC service interfaces already exists (as decided June 2006, 
OGC 06-135r1, http://portal.opengeospatial.org/files/?artifact_id=17566), on the other hand 
the work on ROA and REST is still at an earlier stage (a OGC Service WG aiming to address 
related issues has been recently created). 
 

References 
 
1. European Parliament and European Council, Directive 2007/2/EC of the European Parliament 

and of the Council of 14 March 2007 Establishing an Infrastructure for Spatial Information in 
the European Community (INSPIRE). 2007. 

2. OGC. Open Geospatial Consortium Inc.   [cited 2006 May 17]; Available from: 
http://www.opengeospatial.org. 

3. ISO/TC-211, ISO 19119 Geographic information - Services. 2005. 
4. Network Services Drafting Team, SOAP arguments (version 0.3 – 15.04.2008). 2008, 

European Commission. 
5. Fielding, R.T., Architectural Styles and the Design of Network-based Software Architectures, 

Ph.D. dissertation, in University of California, Irvine. 2000. 
6. Leonard Richardson, S.R., RESTFul Web Services. 2007: O'Reilly. 
7. OGC, Web Processing Service version 1.0. 2008, Open Geospatial Consortium Inc. 
8. W3C, Web Services Description Language (WSDL) 2.0. 2007, W3C. 
9. OGC, Integration of Resource-Oriented Architecture Concepts into OGC Reference Model 

(discussion paper), T. Uslaender, Editor. 2007, Open Geospatial Consortium Inc. 
10. European Commission, Draft Implementing Rules for Metadata (Version 3), Draft. 2007, 

European Commission. 
11. Network Services Drafting Team, Draft Implementing Rules for Discovery and View services 

(IR1). 2007, European Commission. 
 
 



European Commission 
 
EUR 23397 EN – Joint Research Centre – Institute for Environment and Sustainability 
Title: Resource Oriented Architecture and REST 
Author(s): Roberto Lucchi, Michel Millot and Christian Elfers 
Luxembourg: Office for Official Publications of the European Communities 
2008– 16 pp. – 21 x 29.7 cm 
EUR – Scientific and Technical Research series – ISSN 1018-5593 
ISBN 978-92-79-09320-3 
DOI 10.2788/80035 
 
 
Abstract 
In light of the emerging discussion on Resource Oriented Architectures (ROA) and REST technology platform 
as solutions for Spatial Data distributed Infrastructures, the aim of this document is capture Resource Oriented 
Architectures principles and assess the feasibility as well as the advantages of using such approach compared 
with Service Oriented Architectures (SOA). Although most of the comments are domain independent we will use 
the INSPIRE (and the OGC services) infrastructure that is currently based on a SOA as domain for the 
comparative analysis. 
 
 



How to obtain EU publications 
 
Our priced publications are available from EU Bookshop (http://bookshop.europa.eu), where you can place 
an order with the sales agent of your choice. 
 
The Publications Office has a worldwide network of sales agents. You can obtain their contact details by 
sending a fax to (352) 29 29-42758. 

 
 



The mission of the JRC is to provide customer-driven scientific and technical support 
for the conception, development, implementation and monitoring of EU policies. As a 
service of the European Commission, the JRC functions as a reference centre of 
science and technology for the Union. Close to the policy-making process, it serves 
the common interest of the Member States, while being independent of special 
interests, whether private or national. 
 

 

 
LB

-N
A

-23397-EN
-C

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 


