Maximising the benefit of past investment: the subsurface agenda – a case study from Glasgow

Hugh Barron

British Geological Survey, Edinburgh
co-authors:

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ken Lawrie</td>
<td>British Geological Survey</td>
</tr>
<tr>
<td>Helen Bonsor</td>
<td>British Geological Survey</td>
</tr>
<tr>
<td>Simon Watson</td>
<td>Glasgow City Council</td>
</tr>
<tr>
<td>Diarmad Campbell</td>
<td>British Geological Survey</td>
</tr>
<tr>
<td>Dave Lawrence</td>
<td>British Geological Survey</td>
</tr>
<tr>
<td>Sandy Gillon</td>
<td>Glasgow City Council</td>
</tr>
<tr>
<td>Jane Ferguson</td>
<td>Grontmij Ltd</td>
</tr>
<tr>
<td>Martin Smith</td>
<td>British Geological Survey</td>
</tr>
</tbody>
</table>
Which INSPIRE theme?

<table>
<thead>
<tr>
<th>Annex I</th>
<th>Annex II</th>
<th>Annex III</th>
</tr>
</thead>
</table>
| 1. Coordinate reference systems
2. Geographical grid systems
3. Geographical names
4. Administrative units
5. Addresses
6. Cadastral parcels
7. Transport networks
8. Hydrography
9. Protected sites | 1. Elevation
2. Land cover
3. Orthoimagery
4. **Geology** | 1. Statistical units
2. Buildings
3. Soil
4. Land use
5. Human health and safety
6. Utility and Government services
7. Environmental monitoring facilities
8. Production and industrial facilities
9. Agricultural and aquaculture facilities
11. Area management / restriction / regulation zones & reporting units
12. Natural risk zones
13. Atmospheric conditions
14. Meteorological geographical features
15. Oceanographic geographical features
16. Sea regions
17. Bio-geographical regions
18. Habitats and biotopes
19. Species distribution
20. Energy resources
21. Mineral resources |
Which INSPIRE theme?

<table>
<thead>
<tr>
<th>Annex I</th>
<th>Annex II</th>
<th>Annex III</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Geographical grid systems</td>
<td>2. Land cover</td>
<td>2. Buildings</td>
</tr>
<tr>
<td>5. Addresses</td>
<td></td>
<td>5. Human health and safety</td>
</tr>
<tr>
<td>7. Transport networks</td>
<td></td>
<td>7. Environmental monitoring facilities</td>
</tr>
<tr>
<td>8. Hydrography</td>
<td></td>
<td>8. Production and industrial facilities</td>
</tr>
<tr>
<td>9. Protected sites</td>
<td></td>
<td>9. Agricultural and aquaculture facilities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. Area management / restriction / regulation zones & reporting units</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Natural risk zones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13. Atmospheric conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14. Meteorological geographical features</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15. Oceanographic geographical features</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16. Sea regions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17. Bio-geographical regions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18. Habitats and biotopes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19. Species distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20. Energy resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21. Mineral resources</td>
</tr>
</tbody>
</table>

BGS: TWG Editor Geology, Mineral Resources & Coord for Natural Risk Zones
Geology – the 3rd dimension

Zone of Human Interaction
the subsurface – unseen side of construction

Brownfield sites

Urban regeneration

You must know what you are building on
you need subsurface information..

Much of it is already available – the past investment

But more is required
Ground Investigation

Ground Investigation costs*:
- c. 2% of substructure costs
- c. 0.1% overall building costs

BUT industry reports ground problems cause:
- 30 – 50% of delays to projects
- 50% over-run > 1 month
- Most common source of project risk & overspend
- Costly resolution, claims and litigation
- Focus on unforeseen ground conditions

* Chapman & Marcetteau 2004, The Structural Engineer
“DEFRA estimate that £210m per year is spent unnecessarily on remediation due to poor site investigation”

Addressing the problem - INSPIRE approach

Could increase spend on more boreholes etc.

But, much better to maximise use of existing, and future, data & knowledge, e.g. In 3D models

BUT problems in accessing all publicly-held data:
- numerous forms/standards
- very variable quality
- re-use prevented by conflicting acts/regulations/IPR
- confidentiality issues
- Poor accessibility (analogue v digital, multiple locations)
The Glasgow experience

Subsurface raw data (>35,000 Boreholes)

BGS digital data

Data integrated in BGS 3D models for GCC & others – maximises benefit of past investment
Glasgow 3D models

Urban: High resolution

Catchment: Low resolution
following some INSPIRE principles..

- Data should be collected only once and kept where it can be maintained most effectively

- Easy to find what geographic information is available, how it can be used to meet a particular need, and under which conditions it can be acquired and used

For Glasgow 3D models:

- Over 35,000 boreholes in BGS archive
- But many more held by GCC
- Access and constraints impede their reuse (by BGS)
- So improved data flow & partnership key to efficiency gains
The Glasgow partnership solution....

GCCs consultants and contractors (e.g. Grontmij):
- use simple data acquisition templates (INSPIRE-compliant) for ground investigation data
- provide georeferenced site plans

Glasgow City Council (Client):
- Receive and use data
- Transfer key data to BGS

BGS (National Custodian):
- Archive & reinterpret data to update 3D models/GIS
- GCC upload BGS updates to support decision making

All using web services to reduce costs for all parties
The wider perspective

Partnership approach towards culture of improved data accessibility and exchange:
• between LAs & BGS
• and between public & private sectors

Hence
• national subsurface 3D models for decision makers
• reduction in costly unforeseen ground conditions
• improved/ timely delivery of public construction
• potential culture change in private sector
• direct savings to government and Industry

And the scale of the impact?
the construction industry....

10% of GDP
26 million jobs

8% of GDP
€126 bn (2009)

10% of GDP
€10.8 bn (2009)
Any questions?

hfb@bgs.ac.uk

www.bgs.ac.uk