The role of ontology in data sharing within a multi-disciplinary context - An example from energy resources management domain

INSPIRE Conference 2011

Bernhard Vockner
Introduction

- Existing initiatives within SDI (GMES, GEOSS, SEIS,...) aim at information sharing
- Main challenges:
 - Develop standards and specifications to assure technical interoperability
 - Terminology and cognitive interoperability problems prevent development of fully operative and transferable information systems
- Aims:
 - Stress the role of ontology in maximizing the overall use of the spatial information within energy resources management domain
 - Enhancement of geographic information discovery in Catalogue Services
Information sharing within multi-disciplinary context

- Huge SDIs currently being built

 Example:
 - EnerGEO: European contribution to GEOSS

 Goals:
 - develop a strategy for a global assessment of the current and future impact of the exploitation of energy resources on the environment and ecosystems
 - demonstrate this strategy for a variety of energy resources worldwide.
 - provide resources in order to generate domain specific knowledge by integrating resources into the common architecture.

- Status:
 - Heterogeneous user communities
 - Different perspectives upon the same reality
Geoportals: The need for new discovery mechanisms

- Current search in geoportals:
 - Query title, abstract, keywords etc.
 - Applying spatial and temporal filters
Geoportals: The need for new discovery mechanisms

- Current search in geoportals:
 - Query title, abstract, keywords etc.
 - Applying spatial and temporal filters

- Causes semantic heterogeneity problems
 - Keywords are restricted by ambiguities of natural languages (Athanasis, 2008)
 - Communities have various perspectives on the same domain
 - Use of different terminology

→ Users cannot discover all relevant information sources
- Problems of low recall & low precision
Semantic Heterogeneity

- Naming heterogeneity: synonyms, multilinguality
- Cognitive heterogeneity: different meanings of concepts
The role of ontology in mitigating semantic heterogeneity problems

Ontology:
“formal, explicit specification of a shared conceptualization” (Gruber, 1993)

Ontology Engineering - Example: Biomass

- Semi-automatic extraction of relevant terms for energy domain
 - Text Mining (QDA Miner)
Ontology Engineering - Example: Biomass

- Semi-automatic extraction of relevant terms for energy domain
 - Text Mining (QDA Miner)
- Enhancement of results by using existing standardization efforts
 - acquire concept’s names from existing classification/Thesaurus/Taxonomies (e.g. Agrovoc, EuroVoc)
 - many concepts were taken from INSPIRE GEMET Thesaurus
Ontology Engineering - Example: Biomass

- Protegé Ontology Editor
 - Supports OWL
 - markup language with logical formalism
 - Consistency check of ontology by available logic Reasoners (e.g. FaCT++)
Ontology Engineering - Example: Biomass

- Alignment to top-level ontology (SWEET) in order to enable transferability (e.g. `humanactivities.owl`)

- SWEET:
 - group of top-level ontologies designed to be extended by experts in Earth Science
 - modular design
 - extensible
 - scalable
Ontology Engineering - Example: Biomass
Ontology Engineering - Example: Biomass

- **Equivalent classes:**
 - renewableEnergy class is equivalent with nonConventionalEnergy class

- **Necessary condition:**
 - existential restriction *some*: not only renewable energy contributes to the existing heat demand, but also other energy sources

- **Necessary and sufficient condition:**
 - universal restriction *only*: users searching for sustainability will discover only renewable energy datasets
Outlook/Future work

- Challenge → domain expertise
- Multilinguality
- Ontology extension (adding new concepts)

- integrate the ontology into EnerGEO Geoportal searching capabilities
The role of ontology in data sharing within a multi-disciplinary context - An example from energy resources management domain

INSPIRE Conference 2011

Bernhard Vockner
Biomass Example

Studio iSPACE

16 June 30th, 2011