Developing OGC Compliant Geoprocessing Services for Supporting Integrated Coastal Zone Management

Henning Sten Hansen and Morten Fuglsang
Aalborg University

Edinburgh
30 June 2011
Overview

• Introduction

• Indicators for ICZM

• An OGC Compliant Platform for ICZM

• Conclusions
Setting the Frame

- The coastal zones are of strategic importance being home to a large percentage of European citizens
- Exposure of the coastal zones to the possible impacts of climate change
- The vulnerability of human and natural systems on the coasts has increased due to the continuing development and built-up in the immediate vicinity of the shoreline
Effects of climate change

Flooding

Coastal erosion

Soil erosion and leaching
Mitigation and adaptation

Mitigation is defined as the technological change and substitution that reduce resource inputs and emissions per unit of output.

Adaptation to climate change consists of initiatives and measures to reduce the vulnerability of natural and human systems against climate change effects.
Conceptual model for the Decision Support Tool

- **SRES**
 - Economic development
 - Technological development
 - Population development

- **DRIVERS**
- **PRESSURES**
 - Greenhouse gas emissions

- **STATES**
 - Climate change
 - LAND-SEA database
 - Sea level rise
 - Flooding
 - Coastal erosion
 - Groundwater level

- **IMPACTS**

- **RESPONSE**
 - ICZM
 - Coastal protection
 - Off-shore wind farms
 - Spatial planning

Mitigation
- Monitoring

Adaptation
- Modelling
- Acting
Indicator selection

- The selection of indicators is based on the following criteria
- The indicators selected should be based on existing indicator sets like the 27 indicators from the DEDUCE project
- The indicators selected should have relation to ICZM in a climate change perspective
Indicators - 1

- Demand for property on the coast (Indicator 1)
 - Size, density and proportion of the population living in the coastal zone (1.1)
 - Value of residential property (1.2)
- Area of built-up land (Indicator 2)
- Rate of development of previously undeveloped land (Indicator 3)
- Traffic in the coastal zone (Indicator 4)
- Intensity of tourism (14)
Indicators - 2

- Flooding (27)
 - Number of people living within ‘risk zone’
 - Area of protected sites within an ‘at risk’ zone
 - Value of economic assets within an ‘at risk’ zone

- Coastal erosion (26)
 - Geological stability
 - Potential for Renewable Energy
The software architecture

• General standards (ISO, OASIS)

• Web (W3C)

• Geospatial (OGC)
 – WMS, WFS, WPS, Spatial SQL

• Open source versus commercial software
OpenSource Components

- Operating system (Linux)
- Database (PostgreSQL / PostGIS)
- Tomcat – application server
- Apache – Web server
- Geoserver – Geospatial server
- MapFish – Print server
- GeoExt (Web client)
 - OpenLayers + extJS
Data

- Integrated Land-sea Database
- ENC data (S-57)
- National topographic maps
- Pan-European data sets from EEA
- Different access rights and data types
Client Interface

- Build using the GeoEXT system, based on Openlayers and ExtJS system
- System has standard GIS components in terms of layer tree and navigational functionalities
The WPS Processes

- The Web application creates an Execute command to Geoserver
- The PostGIS database receives the spatial query and creates the result view
- The database returns the view to GeoServer that renders the result back to the client as WMS
- For further processing a WFS is made
Geoprocessing dialog

• For geoprocessing execution, a process dialog has been created, with predefined options
Conclusions

• Coastal areas are perceived as particularly vulnerable to the impacts of climate change
• Knowledge based ICZM can contribute to as well climate change adaptation as adaptation
• High quality integrated land-sea data are imperative for reliable results
• An OGC compliant geoprocessing environment based on open source can facilitate the dissemination and use of the ICZM tools
THANK YOU FOR YOUR ATTENTION ! ! !

Henning Sten Hansen
Professor, Aalborg University
Copenhagen Institute of Technology
2750 Ballerup, Denmark
E-mail: hsh@land.aau.dk

www.blast-project.eu