WILDFIRE MANAGEMENT TOOL
WEB EDITION

Using NASA Web World Wind to Predict Wildfire Behavior

Bruce Schubert
David Collins
Patrick Hogan

EO Open Science Workshop
12-14 September 2016 in ESA-ESRIN,
Frascati, Italy
The Wildfire Management Tool (WMT)

Mobile and desktop compatible web app

http://wmt.emxsys.com/

#WMTweb
The Wildfire Management Tool (WMT)

http://eurochallenge.como.polimi.it/

1st place in the NASA World Wind Europa Challenge 2015
FOSS4G Europe, Como, Italy
Bruce Schubert
T.J. Walton
Shawn Patterson
Built on NASA’s Web World Wind SDK

https://nasaworldwind.github.io

- Web WorldWind JavaScript API
 - Well crafted; extensible, easy to use
- Custom shapes
 - Analytic surfaces, rigid shapes, terrain conforming surface shapes, volumes, place marks, geographic text, ….
- 3D globe and continuous 2D map mode with extensible projections
- KML and Collada support
- Flexible and extensible viewing and navigation system
- Shapefile support
- WCS and WMS support
Embodies the Campbell Prediction System (CPS)

Learn from the Past—Predict the Future
What does the fire tell you?

- Alignment of Forces Concept
 - In-alignment tracks
- Trigger Points
 - Geographic/Temporal
- Fuel Flammability Curves
- Replications

Doug Campbell
Includes Rothermel’s Fire Spread Model

\[R_{\text{surface}} = \frac{I_R \xi (1 + \phi_w + \phi_s)}{\rho_b \varepsilon Q_{\text{ig}}} \]

Richard C. Rothermel
Fire Lookouts – *Dynamic Spatiotemporal Markers*

Fire behavior is the manner in which a fire reacts to the influences of: fuel, weather, topography.

- Simply drag-n-drop *Fire Lookouts* where you want to know the potential fire behavior.
- *Fire Lookouts* show fuel model, flame lengths for head, flanks & heal, and direction of max spread.
- Fire Lookouts react to changes in weather and temporal solar conditions.

Developer Note: Fire Lookouts are custom composite renderables made from Placemark and GeographicText objects
New Symbol – The Wildfire Diamond

- Fire behavior depicted for all quadrants
- Arrow shows direction of head fire

<table>
<thead>
<tr>
<th>Intensity</th>
<th>Flame</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0-1’</td>
<td>Very little resistance to control and direct attack with firefighters is possible.</td>
</tr>
<tr>
<td>Moderate</td>
<td>1’-3’</td>
<td>Moderate resistance to control but can be countered with direct attack by firefighters.</td>
</tr>
<tr>
<td>Active</td>
<td>3’-7’</td>
<td>Substantial resistance to control. Direct attack with firefighters must be supplemented with equipment and/or air support.</td>
</tr>
<tr>
<td>Very Active</td>
<td>7’15’</td>
<td>Extreme resistance to control. Indirect attack may be effective. Safety of firefighters in the area is a concern.</td>
</tr>
<tr>
<td>Extreme</td>
<td>> 15’</td>
<td>Extreme resistance to control. Any form of attack will probably not be effective. Safety of firefighters in the area is of critical concern.</td>
</tr>
</tbody>
</table>
Weather Scouts

National Weather Service point weather forecasts are rendered using standard weather station symbols.

- Simply drag-n-drop *Weather Scouts* to where you want to know the wx.
- *Weather Scouts* show:
 - Sky cover
 - Wind speed and direction
 - Air temperature (F)
 - Relative humidity (%)
- *Weather Scouts* are spatiotemporal markers.

Developer Note: *Weather Scouts* are custom composite renderables made from *Placemark* and *GeographicText* objects.
NWS Point Forecasts

National Digital Forecast Database (NDFD) REST Web Service

- Documentation: http://graphical.weather.gov/xml/rest.php
- REST: http://graphical.weather.gov/xml/sample_products/browser_interface/ndfdXML.htm
- Results in Dynamic Weather Markup Language (DWML), i.e., XML
 - Processed by WMT-REST server and sent to WMT client via JSON
Spatiotemporal Data at Reticule

Temporal Widget
- Application date and time
- Sunrise and sunset times
- Local solar hour angle (sun icon)
- Sunrise and sunset hour angles (tick marks)

Location Widget
- View orientation (compass)
- Solar azimuth (sun icon)
- Slope (% and inclinometer)
- Aspect (tick mark)
- Ground elevation (m)

Developer Note: Widgets are custom composite renderables made from ScreenImage and ScreenText objects; slope and aspect are computed from Globe and ElevationModel objects.
GeoMAC Wildfire Incidents

http://www.geomac.gov/
- REST: http://wildfire.cr.usgs.gov/arCGis/rest/services/geomac_fires/MapServer
 - Active fires
- WMS: http://wildfire.cr.usgs.gov/ArcGIS/services/geomac_dyn/MapServer/WMSServer
 - Perimeters: current, previous and historic
 - Recent fire activity: MODIS and HMS satellite imagery analysis

Developer Note: Active Fire icon is a standard Placemark object.
NASA World Wind’s Earth Elevation Model

- WMS: http://worldwind26.arc.nasa.gov/elev/
- Layers:
 - USGS NED 10m (USGS-NED)
 - ASTER GDEM Version 2 30m (aster_v2)
 - General Bathymetric Chart of the Oceans (GEBCO)
LANDFIRE Fuel Models

http://www.landfire.gov/

- REST: http://landfire.cr.usgs.gov/arcgis/rest/services/Landfire
- WMS: http://landfire.cr.usgs.gov/arcgis/services/Landfire/US_130/MapServer/WMSServer
Wind Affects Fire Behavior

- Flames are inclined towards the fuel
- Fuels are heated by radiation and convection
- Direction of max spread is inline with wind direction

Direction of max spread same as wind direction
Slope Affects Fire Behavior

- Upslope fuels are closer to the flames.
- The results are very similar to the effect of wind.
- In the absence of wind, the direction of max spread follows the upslope vector.

Direction of max spread is aligned with upslope vectors

The inclinometer shows slope at the reticle
Solar Radiation Affects Fire Behavior

- Changes the fuel flammability
 - Solar Radiation *preheats* the fuel
 - *Drives off moisture, making the fuel more flammable*
- Changes with time and aspect
 - Creates an unstable fuel bed

Fire behavior is exacerbated on the east aspect in the AM

Solar azimuth is aligned with terrain’s east aspect
CPS Alignment of Forces Concept

- **Variations** in Wind, Slope and Preheating explain changes in fire behavior
- **Wind, Slope and Preheat** are the primary forces
 - Fire Behavior is affected by variations in:
 - Strength
 - Dominance
 - Alignment
- **In-Alignment Forces** Exacerbate Fire Behavior
- **Out-of-Alignment Forces** Reduce Fire Behavior
Software Architecture
In Closing

• Contact
 • Email: “Bruce Schubert” bruce@emxsys.com
 • Twitter: @Emxsys
 • Website: emxsys.com

• Wildfire Management Tool
 • Web App URL: wmt.emxsys.com
 • Next Generation: wildfire.worldwind.earth
 • Project: github.com/emxsys/WorldWindWildfire